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Random dynamical systems

Intuitively random dynamical systems consist of a set of
transformations, which are chosen at random by a stationary
and ergodic stochastic process.

Formally they are build of the following components.

(D Shifts
» Consider a measurable space (E, &).
» Let (Q,%) denote the product space (ENo, &No),
~» The shift S given by

S(w0w1 e ) = w12 ...

defines a measurable transformation on (2, %).

» Let v be an S-invariant and ergodic P-measure on {2

~» MDS (92, v, S) <~ stochastic process



Random dynamical systems
(2) Families of transformations
» Consider a probability space (X, u).

» Let (T))yer be a measurable family of p-preserving
transformations of X.

~» The skew product T on €2 x X given by
T(w,z) = (Sw, Ty,x)
defines a v ® p-preserving transformation.
~~ MDS (2x X, v@pu,T) 0 !
«~» random dynamical

system (RDS) «~ "step , X
skew product” / .




Random ergodic theorems

Assume that the family (7}),er is ergodic, i. e. any measurable
set A € X satisfying
T, '(A) = A

for 7-almost all y € E has measure u(A) € {0, 1}.

Fix f € L*(X). Then for v-almost every w € Q the random
averages

— n—1
; 0Ty, , 0. Ty ):i;]n@@fOTi(w,x)

3\*—‘

converge for p-almost all x € X by Birkhoff’s ergodic theorem.

BUT: The limit function f may differ from the integral § fdu!



Random ergodic theorems

Example

» Set E := {0,1} and consider the sequences w := 010101...
and & := 101010... ~ The P-measure v := %20, + Y2 0¢ is
S-invariant and ergodic.

» Set X := {x1, 22,23}, p:= (¥5,%, ). Let P be any
permutation of X and set Ty := P and T} := P~ 1.

Question: When does the ergodicity of the family (7} ),er imply
the ergodicity of the skew product 17
Theorem (Kakutani '51, Ryll-Nardzewski '55)

If the tranformations are chosen iid, i. e. v is a product measure
of the form ™0 for some P-measure T on &, then the skew
product T' is ergodic if and only if the family (T,)yer is ergodic.

What happens if we pass to Markov chains?



Finite state Markov chains

A Markov chain with finite state space E = {1, ..., k} consists of
» a starting probability vector 7 = (11, ..., 7;) € R*
» a row stochastic matrix IT € R¥*¥ consisting of transition
probabilities 7;;
We assume that
> 7 is a strictly positive fixed vector of Il ~~ stationarity

» II is irreducible, i. e. for some n € N the sum >, IT* has
only positive entries ~» ergodicity




Finite state Markov chains

A Markov chain with finite state space E = {1, ..., k} consists of
» a starting probability vector T = (11, ..., 7;) € R*
» a row stochastic matrix IT € R¥** consisting of transition
probabilities 7;;
We assume that
» 7 is a strictly positive fixed vector of Il ~~ stationarity

» 11 is irreducible, i. e. for some n € N the sum Y ; II* has
only positive entries ~» ergodicity

By Kolmogorov’s extension theorem there exists a unique
probability measure v on €2 satisfying

V({io} X ... X {im—l} x FE x .. ) = TigTi0i1 ° " Tip—2im—1

for all ig,...,4;,—1 € £ and m € N, which is S-invariant and
ergodic.



Strict irreducibility

Consider the relation ~ on E x E arising between states i,j €
if either ¢ = j or m; > 0 and m; > 0 for third state k € E.

In the present setting the following conditions are equivalent:

The graph (E, ~) is connected.
< The matrix I 1T is irreducible.

< The matrix ITTIT is irreducible.

The matrix II is called strictly irreducible if it satisfies one (and
thus all) of the above conditions.




Strict irreducibility
Consider the relation ~ on E x E arising between states i,j €
if either i = j or my; > 0 and m; > 0 for third state k € E.

In the present setting the following conditions are equivalent:

The graph (E, ~) is connected.
< The matrix II7TI is irreducible.

< The matrix IITI7 is irreducible.

The matrix IT is called strictly irreducible if it satisfies one (and
thus all) of the above conditions.

Theorem (Bufetov ’00)

Let IT be strictly irreducible. Then the skew product T is ergodic
if and only if the family {11, ..., Ty} is ergodic.

Question: Is this condition optimal? Can it be extended to
general Markov chains?



General Markov chains

Let (E, &) be a measurable space. A map m: E x & — [0,1] is
called a Markov kernel if

» the component map 7 (-, B) is measurable for any B € &
» the component map 7(y, -) is a probability measure for any
y € E (which we denote by 7, in the following).

The product 7k of two Markov kernels 7 and k is given by
wk(y, B) := J k(z, B) dmy(2)
E
for y € E and B € & and defines again a Markov kernel.

A probability measure 7 on & is called w-invariant if for all
B € & we have

7(B) = JE m(y, B) dr(y).



General Markov chains

We call a Markov kernel 7 irreducible wrt a m-invariant measure
7 if for all B € & with 7(B) > 0 there is for 7-almost every y € F
some n € N (which may depend on y) such that 7" (y, B) > 0.
A general Markov chain consists of

» measurable space (F, &)

» a probability measure 7 on (E, &)

» a Markov kernel 7: E' x & — [0, 1]

By Kolmogorov’s extension theorem there exists a unique
probability measure v on (2 satisfying

v(Bo X ... X Bjp—1 X E X ...) =f J- f dmy,. o (Ym—1)...dmyy (y1)d7(y0)
By VB Bp—1

for all By,...,B;-1 € & and m € N.



Strict irreducibility of Markov kernels

We assume that 7 is m-invariant and 7 is irreducible wrt 7.
~» The measure v is S-invariant and ergodic.

We call a set B € & deterministic if for 7-almost all y € E we
have 7(y, B) € {0,1}.

We shall say that the Markov kernel 7 is strictly irreducible wrt
7 if every deterministic set B € & has measure 7(B) € {0, 1}.
Remarks

» Generalization of the concept for finite state spaces. In this
setting the minimal deterministic sets are given by the
connected components of the graph (E, ~).

» Strict irreducibility implies irreducibility.



Excursion: Markov operators

A bounded linear operator M: L*(E,7) — L*(E, ) is called a
Markov operator if

» f >0 implies Mf >0

» M1 =1

» M f dr = fdrforall feL*(E,r).
A Markov operator M is called irreducible if for any D € & with
M1 p = 1p we have 7(D) € {0, 1}.
Remarks

» The class of Markov operators is closed under composition
and taking adjoints.

» The Koopman operator associated to an MDS is always a
Markov operator. It is irreducible if and only if the MDS is
ergodic.



Markov kernels as Markov operators

A Markov kernel m with invariant probability measure 7 gives
rise to a Markov operator P defined by

PI) = | fn,

for f e L*(E,T).
In the present setting we obtain the following equivalences:

» The irreducibility of m with respect to 7 is equivalent to the
irreducibility of P.

» PP* is irreducible if and only if P*P is irreducible and
both is equivalent to the strict irreducibility of = with
respect to 7.



Ergodicity of step skew products

Theorem (Lummerzheim-Pogorzelski-Z. '23)
The following assertions are equivalent:
i) The Markov kernel 7 is strictly irreducible wrt T.

ii) Any step skew product T over S arising from a family
(Ty)yer of mp transformations on some probability space is
ergodic if and only if the family (T,)yer is ergodic.

Remarks

» generalizes Bufetov’s criterion from finite state spaces to
arbitrary state space and shows that it is in fact a
characterization.

» generalizes Kakutani’s theorem from Bernoulli processes to
Markov chains.



Proof: Kowalski’s theorem
Consider the Koopman operator T on L2 (v ® u) given by
f(p =polT.

The adjoint L of T is called Perron-Frobenius operator.

Theorem (Kowalski '15): If ¢ € L?(v ® u) is an eigenfunction of Lr,
then we have

o(w,x) = p(wo, ) v ® p-almost surely

for some ¢ € L2(T ® ).

Observation: Every T-invariant function (i.e. any fixed function of f)
is an eigenfunction of L.

Corollary: Every T-invariant function ¢ € L?(v ® u) satisfies
o(w,x) := p(wy,z) v @ p-almost surely

for some ¢ € L2(T ® ).



Proof: (i) = (i)

Let D € © x X be a T-invariant set. We want to show that
D = Q x A for some set A € X invariant under (T})yck.

Corollary ~» There is a msb set B € E x X such that
Ip(w,z) :=lg(wo,x) V® p-a.s.

For z € X set B* := {y e E: (y,x) € B}, g, := = and h, := I p\p=.

Lemma: Let M be an irreducible Markov operator. Let g, h > 0 with
g + h =1 such that (Mg, hy = 0. Then either g =0 or h = 0.

Observation: The functions {g,} and {h,} satisfy

0:) = Plor,. } ). hely) = P{hr,. } ()

for 7 ® p-almost all (y,z) € E x X.



0= | awhe droua) = | [ Plon.}w)Pihn,.}w) duteyir)
= | | PocwPrtw) dutarar)
~ || Pocw)Phetw) artw)duta) = | Pow. Phe) duta)
This implies that for py-almost all z € X we have
(P*Pgy, hyy = (Pgs, Phy) = 0
and thus, by the Lemma above, either
Ilpe =g, =0= DB, =

or
lpe=1—-h,=1=B,=F.

This gives B = E x A for some msb A € X.

Easy: T-invariance of D implies A is invariant under (7)) yek-



Proof: (ii) = (1)

Assume that 7 is not strictly irreducible wrt 7
~ deterministic set B € E with 7(B) € (0,1).

Consider the partition of E given by the sets
EB’B:={y€BITI'(ya —1} EBBc:—{yEB 7Ty, —0}
Epge ge :={ye B°: 7(y,B°) = 1}7 Epep:= {y € B°: n(y, B°) = O}.

Let d be the dyadic odometer on [0,1) ~~
mp and ergodic wrt Lebesgue measure .
Set I := [0,12) and I, := [l2,1) ~
d([l) = IQ and d([g) = Il.

Define ergodic family (7y)y,er of -
preserving transformations T} on [0, 1) by

Eisner/Farkas/Haase/Nagel:
Operator theoretic aspects
of ergodic theory, Springer 2015

o '(B) 97 _)d ifye Epp-UEpp
y - Id, inyEB,BUEBC:BC



Proof: (ii) = (1)
Claim: The corresponding skew product 7" is not ergodic.
Consider the sets Dy,...,D4 € Q x [0,1) given by
Dy :=[Egp|x 1, Dy :=[Eppge] x I1
D3 :=[Epe pe| x Iz, Dy :=[Epe g| x I,

where [M] := M x EN for M € E, and set D := D;U--- UD,.

~» D is a T-invariant set of measure 1/2.
1

[EB,5] v [EB,B] = [B]

[Ege ge] v [Ege ] = [B]

[EB,B] [EB,B] [EBe,B] [EBe,B]
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