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Random dynamical systems

Intuitively random dynamical systems consist of a set of
transformations, which are chosen at random by a stationary
and ergodic stochastic process.

Formally they are build of the following components.

1○ Shifts

§ Consider a measurable space pE,E q.

§ Let pΩ,C q denote the product space pEN0 ,E N0q.

⇝ The shift S given by

Spω0ω1 . . . ...q “ ω1ω2 . . .

defines a measurable transformation on pΩ,C q.

§ Let ν be an S-invariant and ergodic P-measure on Ω

⇝ MDS pΩ, ν, Sq ú stochastic process



Random dynamical systems

2○ Families of transformations

§ Consider a probability space pX,µq.

§ Let pTyqyPE be a measurable family of µ-preserving
transformations of X.

⇝ The skew product T on Ω ˆ X given by

T pω, xq :“ pSω, Tω0xq

defines a ν b µ-preserving transformation.

⇝ MDS pΩˆX, νbµ, T q

ú random dynamical
system (RDS) ú ”step
skew product”
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Random ergodic theorems

Assume that the family pTyqyPE is ergodic, i. e. any measurable
set A Ď X satisfying

T´1
y pAq “ A

for τ -almost all y P E has measure µpAq P t0, 1u.

Fix f P L1pXq. Then for ν-almost every ω P Ω the random
averages

1

n

n´1
ÿ

i“0

f ˝ Tωi´1 ˝ ...Tω0pxq “
1

n

n´1
ÿ

i“0

11 b f ˝ T ipω, xq

converge for µ-almost all x P X by Birkhoff’s ergodic theorem.

BUT: The limit function f may differ from the integral
ş

fdµ!



Random ergodic theorems

Example

§ Set E :“ t0, 1u and consider the sequences ω :“ 010101...
and ξ :“ 101010... ⇝ The P-measure ν :“ 1⁄2 δω ` 1⁄2 δξ is
S-invariant and ergodic.

§ Set X :“ tx1, x2, x3u, µ :“ p1⁄3, 1⁄3, 1⁄3q. Let P be any
permutation of X and set T0 :“ P and T1 :“ P´1.

Question: When does the ergodicity of the family pTyqyPE imply
the ergodicity of the skew product T?

Theorem (Kakutani ’51, Ryll-Nardzewski ’55)

If the tranformations are chosen iid, i. e. ν is a product measure
of the form τN0 for some P-measure τ on E , then the skew
product T is ergodic if and only if the family pTyqyPE is ergodic.

What happens if we pass to Markov chains?



Finite state Markov chains

A Markov chain with finite state space E “ t1, ..., ku consists of

§ a starting probability vector τ “ pτ1, ..., τkq P Rk

§ a row stochastic matrix Π P Rkˆk consisting of transition
probabilities πij

We assume that

§ τ is a strictly positive fixed vector of Π ⇝ stationarity

§ Π is irreducible, i. e. for some n P N the sum
řn

i“1Π
i has

only positive entries ⇝ ergodicity
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Finite state Markov chains

A Markov chain with finite state space E “ t1, ..., ku consists of

§ a starting probability vector τ “ pτ1, ..., τkq P Rk

§ a row stochastic matrix Π P Rkˆk consisting of transition
probabilities πij

We assume that

§ τ is a strictly positive fixed vector of Π ⇝ stationarity

§ Π is irreducible, i. e. for some n P N the sum
řn

i“1Π
i has

only positive entries ⇝ ergodicity

By Kolmogorov’s extension theorem there exists a unique
probability measure ν on Ω satisfying

νpti0u ˆ . . . ˆ tim´1u ˆ E ˆ . . .q “ τi0πi0i1 ¨ ¨ ¨πim´2im´1

for all i0, . . . , im´1 P E and m P N, which is S-invariant and
ergodic.



Strict irreducibility

Consider the relation „ on E ˆ E arising between states i, j P E
if either i “ j or πki ą 0 and πkj ą 0 for third state k P E.

In the present setting the following conditions are equivalent:

The graph pE,„q is connected.

ô The matrix ΠTΠ is irreducible.

ô The matrix ΠΠT is irreducible.

The matrix Π is called strictly irreducible if it satisfies one (and
thus all) of the above conditions.
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Strict irreducibility

Consider the relation „ on E ˆ E arising between states i, j P E
if either i “ j or πki ą 0 and πkj ą 0 for third state k P E.

In the present setting the following conditions are equivalent:

The graph pE,„q is connected.

ô The matrix ΠTΠ is irreducible.

ô The matrix ΠΠT is irreducible.

The matrix Π is called strictly irreducible if it satisfies one (and
thus all) of the above conditions.

Theorem (Bufetov ’00)

Let Π be strictly irreducible. Then the skew product T is ergodic
if and only if the family tT1, ..., Tku is ergodic.

Question: Is this condition optimal? Can it be extended to
general Markov chains?



General Markov chains

Let pE,E q be a measurable space. A map π : E ˆ E Ñ r0, 1s is
called a Markov kernel if

§ the component map πp¨, Bq is measurable for any B P E

§ the component map πpy, ¨q is a probability measure for any
y P E (which we denote by πy in the following).

The product πκ of two Markov kernels π and κ is given by

πκpy,Bq :“

ż

E
κpz,Bq dπypzq

for y P E and B P E and defines again a Markov kernel.

A probability measure τ on E is called π-invariant if for all
B P E we have

τpBq “

ż

E
πpy,Bq dτpyq.



General Markov chains

We call a Markov kernel π irreducible wrt a π-invariant measure
τ if for all B P E with τpBq ą 0 there is for τ -almost every y P E
some n P N (which may depend on y) such that πnpy,Bq ą 0.

A general Markov chain consists of

§ measurable space pE,E q

§ a probability measure τ on pE,E q

§ a Markov kernel π : E ˆ E Ñ r0, 1s

By Kolmogorov’s extension theorem there exists a unique
probability measure ν on Ω satisfying

νpB0 ˆ ... ˆ Bm´1 ˆ E ˆ ...q “

ż

B0

ż

B1

...

ż

Bm´1

dπym´2 pym´1q...dπy0 py1qdτpy0q

for all B0, . . . , Bm´1 P E and m P N.



Strict irreducibility of Markov kernels

We assume that τ is π-invariant and π is irreducible wrt τ .
⇝ The measure ν is S-invariant and ergodic.

We call a set B P E deterministic if for τ -almost all y P E we
have πpy,Bq P t0, 1u.

We shall say that the Markov kernel π is strictly irreducible wrt
τ if every deterministic set B P E has measure τpBq P t0, 1u.

Remarks

§ Generalization of the concept for finite state spaces. In this
setting the minimal deterministic sets are given by the
connected components of the graph pE,„q.

§ Strict irreducibility implies irreducibility.



Excursion: Markov operators

A bounded linear operator M : L2pE, τq Ñ L2pE, τq is called a
Markov operator if

§ f ľ 0 implies Mf ľ 0

§ M11 “ 11

§
ş

Mf dτ “
ş

f dτ for all f P L2pE, τq.

A Markov operator M is called irreducible if for any D P E with
M11D “ 11D we have τpDq P t0, 1u.

Remarks

§ The class of Markov operators is closed under composition
and taking adjoints.

§ The Koopman operator associated to an MDS is always a
Markov operator. It is irreducible if and only if the MDS is
ergodic.



Markov kernels as Markov operators

A Markov kernel π with invariant probability measure τ gives
rise to a Markov operator P defined by

Pfpyq :“

ż

E
f dπy

for f P L2pE, τq.

In the present setting we obtain the following equivalences:

§ The irreducibility of π with respect to τ is equivalent to the
irreducibility of P .

§ PP ˚ is irreducible if and only if P ˚P is irreducible and
both is equivalent to the strict irreducibility of π with
respect to τ .



Ergodicity of step skew products

Theorem (Lummerzheim-Pogorzelski-Z. ’23)

The following assertions are equivalent:

i) The Markov kernel π is strictly irreducible wrt τ .

ii) Any step skew product T over S arising from a family
pTyqyPE of mp transformations on some probability space is
ergodic if and only if the family pTyqyPE is ergodic.

Remarks

§ generalizes Bufetov’s criterion from finite state spaces to
arbitrary state space and shows that it is in fact a
characterization.

§ generalizes Kakutani’s theorem from Bernoulli processes to
Markov chains.



Proof: Kowalski’s theorem

Consider the Koopman operator pT on L2pν b µq given by

pTφ :“ φ ˝ T.

The adjoint LT of pT is called Perron-Frobenius operator.

Theorem (Kowalski ’15): If φ P L2pν b µq is an eigenfunction of LT ,
then we have

φpω, xq “ pφpω0, xq ν b µ-almost surely

for some pφ P L2pτ b µq.

Observation: Every T -invariant function (i.e. any fixed function of pT )
is an eigenfunction of LT .

Corollary: Every T -invariant function φ P L2pν b µq satisfies

φpω, xq :“ pφpω0, xq ν b µ-almost surely

for some pφ P L2pτ b µq.



Proof: piq ñ piiq

Let D Ď Ω ˆ X be a T -invariant set. We want to show that
D “ Ω ˆ A for some set A Ď X invariant under pTyqyPE .

Corollary ⇝ There is a msb set B Ď E ˆ X such that

11Dpω, xq :“ 11Bpω0, xq ν b µ-a. s.

For x P X set Bx :“ ty P E : py, xq P Bu, gx :“ 11Bx and hx :“ 11EzBx .

Lemma: Let M be an irreducible Markov operator. Let g, h ľ 0 with
g ` h “ 11 such that xMg, hy “ 0. Then either g “ 0 or h “ 0.

Observation: The functions tgxu and thxu satisfy

gxpyq “ P
!

gTyx

)

pyq, hxpyq “ P
!

hTyx

)

pyq

for τ b µ-almost all py, xq P E ˆ X.



0 “

ż

EˆX

gxpyqhxpyq dτ b µpy, xq “

ż

E

ż

X

P
!

gTyx

)

pyqP
␣

hTyx

)

pyq dµpxqdτpyq

“

ż

E

ż

X

PgxpyqPhxpyq dµpxqdτpyq

“

ż

X

ż

E

PgxpyqPhxpyq dτpyqdµpxq “

ż

X

xPgx, Phxy dµpxq

This implies that for µ-almost all x P X we have

xP˚Pgx, hxy “ xPgx, Phxy “ 0

and thus, by the Lemma above, either

11Bx “ gx “ 0 ñ Bx “ H

or
11Bx “ 11 ´ hx “ 11 ñ Bx “ E.

This gives B “ E ˆ A for some msb A Ď X.

Easy: T -invariance of D implies A is invariant under pTyqyPE .



Proof: piiq ñ piq
Assume that π is not strictly irreducible wrt τ
⇝ deterministic set B Ď E with τpBq P p0, 1q.

Consider the partition of E given by the sets

EB,B :“
␣

y P B : πpy,Bq “ 1
(

, EB,Bc :“
␣

y P B : πpy,Bq “ 0
(

EBc,Bc :“
␣

y P Bc : πpy,Bc
q “ 1

(

, EBc,B :“
␣

y P Bc : πpy,Bc
q “ 0

(

.

Let d be the dyadic odometer on r0, 1q ⇝
mp and ergodic wrt Lebesgue measure λ.

Set I1 :“ r0, 1{2q and I2 :“ r1{2, 1q ⇝
dpI1q “ I2 and dpI2q “ I1.

Define ergodic family pTyqyPE of λ-
preserving transformations Ty on r0, 1q by

Ty :“

#

d, if y P EB,Bc Y EBc,B

Id, if y P EB,B Y EBc,Bc
Eisner/Farkas/Haase/Nagel:
Operator theoretic aspects
of ergodic theory, Springer 2015



Proof: piiq ñ piq

Claim: The corresponding skew product T is not ergodic.

Consider the sets D1, . . . , D4 Ď Ω ˆ r0, 1q given by

D1 :“ rEB,Bs ˆ I1, D2 :“ rEB,Bcs ˆ I1

D3 :“ rEBc,Bcs ˆ I2, D4 :“ rEBc,Bs ˆ I2,

where rM s :“ M ˆ EN for M Ď E, and set D :“ D1 9Y ¨ ¨ ¨ 9YD4.

⇝ D is a T -invariant set of measure 1{2.

1

0
rEB,Bs rEB,Bcs rEBc,Bcs rEBc,Bs

Ω

D1 D2

D3 D4 rEB,Bs Y rEB,Bcs “ rBs

rEBc,Bcs Y rEBc,Bs “ rBcs
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