Strictly irreducible Markov operators and ergodicity properties of skew products

Elias Zimmermann

Leipzig University
November 14th 2023
joint work with Pablo Lummerzheim and Felix Pogorzelski

Random dynamical systems

Intuitively random dynamical systems consist of a set of transformations, which are chosen at random by a stationary and ergodic stochastic process.

Formally they are build of the following components.
(1) Shifts

- Consider a measurable space (E, \mathscr{E}).
- Let (Ω, \mathscr{C}) denote the product space $\left(E^{\mathbb{N}_{0}}, \mathscr{E}^{\mathbb{N}_{0}}\right)$.
\rightsquigarrow The shift S given by

$$
S\left(\omega_{0} \omega_{1} \ldots \ldots\right)=\omega_{1} \omega_{2} \ldots
$$

defines a measurable transformation on (Ω, \mathscr{C}).

- Let ν be an S-invariant and ergodic P-measure on Ω
$\rightsquigarrow \operatorname{MDS}(\Omega, \nu, S) \longleftrightarrow \leadsto$ stochastic process

Random dynamical systems

(2) Families of transformations

- Consider a probability space (X, μ).
- Let $\left(T_{y}\right)_{y \in E}$ be a measurable family of μ-preserving transformations of X.
\rightsquigarrow The skew product T on $\Omega \times X$ given by

$$
T(\omega, x):=\left(S \omega, T_{\omega_{0}} x\right)
$$

defines a $\nu \otimes \mu$-preserving transformation.
$\rightsquigarrow \operatorname{MDS}(\Omega \times X, \nu \otimes \mu, T)$ $\leadsto \leadsto$ random dynamical system (RDS) $\leadsto \leadsto$ "step skew product"

Random ergodic theorems

Assume that the family $\left(T_{y}\right)_{y \in E}$ is ergodic, i. e. any measurable set $A \subseteq X$ satisfying

$$
T_{y}^{-1}(A)=A
$$

for τ-almost all $y \in E$ has measure $\mu(A) \in\{0,1\}$.
Fix $f \in L^{1}(X)$. Then for ν-almost every $\omega \in \Omega$ the random averages

$$
\frac{1}{n} \sum_{i=0}^{n-1} f \circ T_{\omega_{i-1}} \circ \ldots T_{\omega_{0}}(x)=\frac{1}{n} \sum_{i=0}^{n-1} \mathbb{1} \otimes f \circ T^{i}(\omega, x)
$$

converge for μ-almost all $x \in X$ by Birkhoff's ergodic theorem.
BUT: The limit function \bar{f} may differ from the integral $\int f d \mu$!

Random ergodic theorems

Example

- Set $E:=\{0,1\}$ and consider the sequences $\omega:=010101 \ldots$ and $\xi:=101010 \ldots \rightsquigarrow$ The P-measure $\nu:=1 / 2 \delta_{\omega}+1 / 2 \delta_{\xi}$ is S-invariant and ergodic.
- Set $X:=\left\{x_{1}, x_{2}, x_{3}\right\}, \mu:=(1 / 3,1 / 3,1 / 3)$. Let P be any permutation of X and set $T_{0}:=P$ and $T_{1}:=P^{-1}$.

Question: When does the ergodicity of the family $\left(T_{y}\right)_{y \in E}$ imply the ergodicity of the skew product T ?

Theorem (Kakutani '51, Ryll-Nardzewski '55)
If the tranformations are chosen iid, i. e. ν is a product measure of the form $\tau^{\mathbb{N}_{0}}$ for some P-measure τ on \mathscr{E}, then the skew product T is ergodic if and only if the family $\left(T_{y}\right)_{y \in E}$ is ergodic.

What happens if we pass to Markov chains?

Finite state Markov chains

A Markov chain with finite state space $E=\{1, \ldots, k\}$ consists of

- a starting probability vector $\tau=\left(\tau_{1}, \ldots, \tau_{k}\right) \in \mathbb{R}^{k}$
- a row stochastic matrix $\Pi \in \mathbb{R}^{k \times k}$ consisting of transition probabilities $\pi_{i j}$

We assume that

- τ is a strictly positive fixed vector of $\Pi \rightsquigarrow$ stationarity
- Π is irreducible, i. e. for some $n \in \mathbb{N}$ the sum $\sum_{i=1}^{n} \Pi^{i}$ has only positive entries \rightsquigarrow ergodicity

Finite state Markov chains

A Markov chain with finite state space $E=\{1, \ldots, k\}$ consists of

- a starting probability vector $\tau=\left(\tau_{1}, \ldots, \tau_{k}\right) \in \mathbb{R}^{k}$
- a row stochastic matrix $\Pi \in \mathbb{R}^{k \times k}$ consisting of transition probabilities $\pi_{i j}$

We assume that

- τ is a strictly positive fixed vector of $\Pi \rightsquigarrow$ stationarity
- Π is irreducible, i. e. for some $n \in \mathbb{N}$ the sum $\sum_{i=1}^{n} \Pi^{i}$ has only positive entries \rightsquigarrow ergodicity

By Kolmogorov's extension theorem there exists a unique probability measure ν on Ω satisfying

$$
\nu\left(\left\{i_{0}\right\} \times \ldots \times\left\{i_{m-1}\right\} \times E \times \ldots\right)=\tau_{i_{0}} \pi_{i_{0} i_{1}} \cdots \pi_{i_{m-2} i_{m-1}}
$$

for all $i_{0}, \ldots, i_{m-1} \in E$ and $m \in \mathbb{N}$, which is S-invariant and ergodic.

Strict irreducibility

Consider the relation \sim on $E \times E$ arising between states $i, j \in E$ if either $i=j$ or $\pi_{k i}>0$ and $\pi_{k j}>0$ for third state $k \in E$.

In the present setting the following conditions are equivalent:

$$
\begin{aligned}
& \text { The graph }(E, \sim) \text { is connected. } \\
\Leftrightarrow & \text { The matrix } \Pi^{T} \Pi \text { is irreducible. } \\
\Leftrightarrow & \text { The matrix } \Pi \Pi^{T} \text { is irreducible. }
\end{aligned}
$$

The matrix Π is called strictly irreducible if it satisfies one (and thus all) of the above conditions.

Strict irreducibility

Consider the relation \sim on $E \times E$ arising between states $i, j \in E$ if either $i=j$ or $\pi_{k i}>0$ and $\pi_{k j}>0$ for third state $k \in E$.
In the present setting the following conditions are equivalent:
The graph (E, \sim) is connected.
\Leftrightarrow The matrix $\Pi^{T} \Pi$ is irreducible.
\Leftrightarrow The matrix $\Pi \Pi^{T}$ is irreducible.
The matrix Π is called strictly irreducible if it satisfies one (and thus all) of the above conditions.

Theorem (Bufetov '00)

Let Π be strictly irreducible. Then the skew product T is ergodic if and only if the family $\left\{T_{1}, \ldots, T_{k}\right\}$ is ergodic.
Question: Is this condition optimal? Can it be extended to general Markov chains?

General Markov chains

Let (E, \mathscr{E}) be a measurable space. A map $\pi: E \times \mathscr{E} \rightarrow[0,1]$ is called a Markov kernel if

- the component map $\pi(\cdot, B)$ is measurable for any $B \in \mathscr{E}$
- the component map $\pi(y, \cdot)$ is a probability measure for any $y \in E$ (which we denote by π_{y} in the following).

The product $\pi \kappa$ of two Markov kernels π and κ is given by

$$
\pi \kappa(y, B):=\int_{E} \kappa(z, B) d \pi_{y}(z)
$$

for $y \in E$ and $B \in \mathscr{E}$ and defines again a Markov kernel.
A probability measure τ on \mathscr{E} is called π-invariant if for all $B \in \mathscr{E}$ we have

$$
\tau(B)=\int_{E} \pi(y, B) d \tau(y)
$$

General Markov chains

We call a Markov kernel π irreducible wrt a π-invariant measure τ if for all $B \in \mathscr{E}$ with $\tau(B)>0$ there is for τ-almost every $y \in E$ some $n \in \mathbb{N}$ (which may depend on y) such that $\pi^{n}(y, B)>0$.

A general Markov chain consists of

- measurable space (E, \mathscr{E})
- a probability measure τ on (E, \mathscr{E})
- a Markov kernel $\pi: E \times \mathscr{E} \rightarrow[0,1]$

By Kolmogorov's extension theorem there exists a unique probability measure ν on Ω satisfying

$$
\nu\left(B_{0} \times \ldots \times B_{m-1} \times E \times \ldots\right)=\int_{B_{0}} \int_{B_{1}} \ldots \int_{B_{m-1}} d \pi_{y_{m-2}}\left(y_{m-1}\right) \ldots d \pi_{y_{0}}\left(y_{1}\right) d \tau\left(y_{0}\right)
$$

for all $B_{0}, \ldots, B_{m-1} \in \mathscr{E}$ and $m \in \mathbb{N}$.

Strict irreducibility of Markov kernels

We assume that τ is π-invariant and π is irreducible wrt τ.
\rightsquigarrow The measure ν is S-invariant and ergodic.
We call a set $B \in \mathscr{E}$ deterministic if for τ-almost all $y \in E$ we have $\pi(y, B) \in\{0,1\}$.

We shall say that the Markov kernel π is strictly irreducible wrt τ if every deterministic set $B \in \mathscr{E}$ has measure $\tau(B) \in\{0,1\}$.

Remarks

- Generalization of the concept for finite state spaces. In this setting the minimal deterministic sets are given by the connected components of the graph (E, \sim).
- Strict irreducibility implies irreducibility.

Excursion: Markov operators

A bounded linear operator $M: L^{2}(E, \tau) \rightarrow L^{2}(E, \tau)$ is called a Markov operator if

- $f \geq 0$ implies $M f \geq 0$
- $M \mathbb{1}=\mathbb{1}$
- $\int M f d \tau=\int f d \tau$ for all $f \in L^{2}(E, \tau)$.

A Markov operator M is called irreducible if for any $D \in \mathscr{E}$ with $M \mathbb{1}_{D}=\mathbb{1}_{D}$ we have $\tau(D) \in\{0,1\}$.
Remarks

- The class of Markov operators is closed under composition and taking adjoints.
- The Koopman operator associated to an MDS is always a Markov operator. It is irreducible if and only if the MDS is ergodic.

Markov kernels as Markov operators

A Markov kernel π with invariant probability measure τ gives rise to a Markov operator P defined by

$$
P f(y):=\int_{E} f d \pi_{y}
$$

for $f \in L^{2}(E, \tau)$.
In the present setting we obtain the following equivalences:

- The irreducibility of π with respect to τ is equivalent to the irreducibility of P.
- $P P^{*}$ is irreducible if and only if $P^{*} P$ is irreducible and both is equivalent to the strict irreducibility of π with respect to τ.

Ergodicity of step skew products

Theorem (Lummerzheim-Pogorzelski-Z. '23)

The following assertions are equivalent:
i) The Markov kernel π is strictly irreducible wrt τ.
ii) Any step skew product T over S arising from a family $\left(T_{y}\right)_{y \in E}$ of $m p$ transformations on some probability space is ergodic if and only if the family $\left(T_{y}\right)_{y \in E}$ is ergodic.

Remarks

- generalizes Bufetov's criterion from finite state spaces to arbitrary state space and shows that it is in fact a characterization.
- generalizes Kakutani's theorem from Bernoulli processes to Markov chains.

Proof: Kowalski's theorem

Consider the Koopman operator \widehat{T} on $L^{2}(\nu \otimes \mu)$ given by

$$
\widehat{T} \varphi:=\varphi \circ T .
$$

The adjoint \mathcal{L}_{T} of \widehat{T} is called Perron-Frobenius operator.
Theorem (Kowalski '15): If $\varphi \in L^{2}(\nu \otimes \mu)$ is an eigenfunction of \mathcal{L}_{T}, then we have

$$
\varphi(\omega, x)=\widehat{\varphi}\left(\omega_{0}, x\right) \quad \nu \otimes \mu \text {-almost surely }
$$

for some $\hat{\varphi} \in L^{2}(\tau \otimes \mu)$.
Observation: Every T-invariant function (i.e. any fixed function of \widehat{T}) is an eigenfunction of \mathcal{L}_{T}.
Corollary: Every T-invariant function $\varphi \in L^{2}(\nu \otimes \mu)$ satisfies

$$
\varphi(\omega, x):=\widehat{\varphi}\left(\omega_{0}, x\right) \quad \nu \otimes \mu \text {-almost surely }
$$

for some $\hat{\varphi} \in L^{2}(\tau \otimes \mu)$.

Proof: $(i) \Rightarrow(i i)$

Let $D \subseteq \Omega \times X$ be a T-invariant set. We want to show that $D=\Omega \times A$ for some set $A \subseteq X$ invariant under $\left(T_{y}\right)_{y \in E}$.
Corollary \rightsquigarrow There is a msb set $B \subseteq E \times X$ such that

$$
\mathbb{1}_{D}(\omega, x):=\mathbb{1}_{B}\left(\omega_{0}, x\right) \quad \nu \otimes \mu \text {-a. s. }
$$

For $x \in X$ set $B^{x}:=\{y \in E:(y, x) \in B\}, g_{x}:=\mathbb{1}_{B^{x}}$ and $h_{x}:=\mathbb{1}_{E \backslash B^{x}}$.
Lemma: Let M be an irreducible Markov operator. Let $g, h \geq 0$ with $g+h=\mathbb{1}$ such that $\langle M g, h\rangle=0$. Then either $g=0$ or $h=0$.

Observation: The functions $\left\{g_{x}\right\}$ and $\left\{h_{x}\right\}$ satisfy

$$
g_{x}(y)=P\left\{g_{T_{y} x}\right\}(y), h_{x}(y)=P\left\{h_{T_{y} x}\right\}(y)
$$

for $\tau \otimes \mu$-almost all $(y, x) \in E \times X$.

$$
\begin{aligned}
0 & =\int_{E \times X} g_{x}(y) h_{x}(y) d \tau \otimes \mu(y, x)=\int_{E} \int_{X} P\left\{g_{T_{y} x}\right\}(y) P\left\{h_{T_{y} x}\right\}(y) d \mu(x) d \tau(y) \\
& =\int_{E} \int_{X} P g_{x}(y) P h_{x}(y) d \mu(x) d \tau(y) \\
& =\int_{X} \int_{E} P g_{x}(y) P h_{x}(y) d \tau(y) d \mu(x)=\int_{X}\left\langle P g_{x}, P h_{x}\right\rangle d \mu(x)
\end{aligned}
$$

This implies that for μ-almost all $x \in X$ we have

$$
\left\langle P^{*} P g_{x}, h_{x}\right\rangle=\left\langle P g_{x}, P h_{x}\right\rangle=0
$$

and thus, by the Lemma above, either

$$
\mathbb{1}_{B^{x}}=g_{x}=0 \Rightarrow B_{x}=\varnothing
$$

or

$$
\mathbb{1}_{B^{x}}=\mathbb{1}-h_{x}=\mathbb{1} \Rightarrow B_{x}=E .
$$

This gives $B=E \times A$ for some msb $A \subseteq X$.
Easy: T-invariance of D implies A is invariant under $\left(T_{y}\right)_{y \in E}$.

Proof: $(i i) \Rightarrow(i)$

Assume that π is not strictly irreducible wrt τ \rightsquigarrow deterministic set $B \subseteq E$ with $\tau(B) \in(0,1)$.

Consider the partition of E given by the sets

$$
\begin{gathered}
E_{B, B}:=\{y \in B: \pi(y, B)=1\}, E_{B, B^{c}}:=\{y \in B: \pi(y, B)=0\} \\
E_{B^{c}, B^{c}}:=\left\{y \in B^{c}: \pi\left(y, B^{c}\right)=1\right\}, E_{B^{c}, B}:=\left\{y \in B^{c}: \pi\left(y, B^{c}\right)=0\right\} .
\end{gathered}
$$

Eisner/Farkas/Haase/Nagel:
Operator theoretic aspects of ergodic theory, Springer 2015

Let d be the dyadic odometer on $[0,1) \rightsquigarrow$ mp and ergodic wrt Lebesgue measure λ.
Set $I_{1}:=[0,1 / 2)$ and $I_{2}:=[1 / 2,1) \rightsquigarrow$ $d\left(I_{1}\right)=I_{2}$ and $d\left(I_{2}\right)=I_{1}$.

Define ergodic family $\left(T_{y}\right)_{y \in E}$ of λ preserving transformations T_{y} on $[0,1)$ by

$$
T_{y}:=\left\{\begin{array}{l}
d, \text { if } y \in E_{B, B^{c}} \cup E_{B^{c}, B} \\
\text { Id, if } y \in E_{B, B} \cup E_{B^{c}, B^{c}}
\end{array}\right.
$$

Proof: $(i i) \Rightarrow(i)$

Claim: The corresponding skew product T is not ergodic.
Consider the sets $D_{1}, \ldots, D_{4} \subseteq \Omega \times[0,1)$ given by

$$
\begin{aligned}
D_{1} & :=\left[E_{B, B}\right] \times I_{1}, D_{2} \\
D_{3} & :=\left[E_{B, B^{c}}\right] \times I_{1} \\
\left.B^{c}, B^{c}\right] \times I_{2}, D_{4} & :=\left[E_{B^{c}, B}\right] \times I_{2},
\end{aligned}
$$

where $[M]:=M \times E^{\mathbb{N}}$ for $M \subseteq E$, and set $D:=D_{1} \dot{\cup} \cdots \dot{\cup} D_{4}$.
$\rightsquigarrow D$ is a T-invariant set of measure $1 / 2$.

$$
\begin{gathered}
{\left[E_{B, B}\right] \cup\left[E_{B, B^{c}}\right]=[B]} \\
{\left[E_{B^{c}, B^{c}}\right] \cup\left[E_{B^{c}, B}\right]=\left[B^{c}\right]}
\end{gathered}
$$

$$
\Omega
$$

P. Lummerzheim, F. Pogorzelski and E. Zimmermann: Strict irreducibility of Markov chains and ergodicity of skew products, preprint, arxiv:2205.09847

Thank you!

