Strictly irreducible Markov operators and ergodicity properties of skew products

Elias Zimmermann

Leipzig University

November 14th 2023

joint work with Pablo Lummerzheim and Felix Pogorzelski

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Random dynamical systems

Intuitively *random dynamical systems* consist of a set of transformations, which are chosen at random by a stationary and ergodic stochastic process.

Formally they are build of the following components.

(1) Shifts

- Consider a measurable space (E, \mathscr{E}) .
- Let (Ω, \mathscr{C}) denote the product space $(E^{\mathbb{N}_0}, \mathscr{E}^{\mathbb{N}_0})$.

 \leadsto The shift S given by

$$S(\omega_0\omega_1\ldots)=\omega_1\omega_2\ldots$$

defines a measurable transformation on (Ω, \mathscr{C}) .

► Let ν be an S-invariant and ergodic P-measure on Ω \rightsquigarrow MDS $(\Omega, \nu, S) \iff$ stochastic process

Random dynamical systems

(2) Families of transformations

- Consider a probability space (X, μ) .
- Let $(T_y)_{y \in E}$ be a measurable family of μ -preserving transformations of X.

 \leadsto The skew product T on $\Omega\times X$ given by

$$T(\omega, x) := (S\omega, T_{\omega_0}x)$$

defines a $\nu\otimes\mu\text{-}\mathrm{preserving}$ transformation.

 \rightsquigarrow MDS $(\Omega \times X, \nu \otimes \mu, T)$ \longleftrightarrow random dynamical system (RDS) \longleftrightarrow "step skew product"

Random ergodic theorems

Assume that the family $(T_y)_{y \in E}$ is ergodic, i. e. any measurable set $A \subseteq X$ satisfying

$$T_y^{-1}(A) = A$$

for τ -almost all $y \in E$ has measure $\mu(A) \in \{0, 1\}$.

Fix $f \in L^1(X)$. Then for ν -almost every $\omega \in \Omega$ the random averages

$$\frac{1}{n}\sum_{i=0}^{n-1}f \circ T_{\omega_{i-1}} \circ \dots T_{\omega_0}(x) = \frac{1}{n}\sum_{i=0}^{n-1} 1 \otimes f \circ T^i(\omega, x)$$

converge for μ -almost all $x \in X$ by Birkhoff's ergodic theorem. BUT: The limit function \overline{f} may differ from the integral $\int f d\mu!$

Random ergodic theorems

Example

- Set $E := \{0, 1\}$ and consider the sequences $\omega := 010101...$ and $\xi := 101010... \rightsquigarrow$ The P-measure $\nu := \frac{1}{2} \delta_{\omega} + \frac{1}{2} \delta_{\xi}$ is *S*-invariant and ergodic.
- Set $X := \{x_1, x_2, x_3\}, \mu := (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$. Let P be any permutation of X and set $T_0 := P$ and $T_1 := P^{-1}$.

Question: When does the ergodicity of the family $(T_y)_{y \in E}$ imply the ergodicity of the skew product T?

Theorem (Kakutani '51, Ryll-Nardzewski '55)

If the tranformations are chosen iid, i. e. ν is a product measure of the form $\tau^{\mathbb{N}_0}$ for some P-measure τ on \mathscr{E} , then the skew product T is ergodic if and only if the family $(T_y)_{y\in E}$ is ergodic.

What happens if we pass to Markov chains?

Finite state Markov chains

A Markov chain with finite state space $E = \{1, ..., k\}$ consists of

- a starting probability vector $\tau = (\tau_1, ..., \tau_k) \in \mathbb{R}^k$
- ▶ a row stochastic matrix $\Pi \in \mathbb{R}^{k \times k}$ consisting of transition probabilities π_{ij}

We assume that

- ▶ τ is a strictly positive fixed vector of $\Pi \rightsquigarrow$ stationarity
- ▶ Π is irreducible, i. e. for some $n \in \mathbb{N}$ the sum $\sum_{i=1}^{n} \Pi^{i}$ has only positive entries \rightsquigarrow ergodicity

A D F A 目 F A E F A E F A Q Q

Finite state Markov chains

A Markov chain with finite state space $E = \{1, ..., k\}$ consists of

- a starting probability vector $\tau = (\tau_1, ..., \tau_k) \in \mathbb{R}^k$
- \blacktriangleright a row stochastic matrix $\Pi \in \mathbb{R}^{k \times k}$ consisting of transition probabilities π_{ij}

We assume that

- \blacktriangleright τ is a strictly positive fixed vector of $\Pi \rightsquigarrow$ stationarity
- Π is irreducible, i. e. for some $n \in \mathbb{N}$ the sum $\sum_{i=1}^{n} \Pi^{i}$ has only positive entries \rightsquigarrow ergodicity

By Kolmogorov's extension theorem there exists a unique probability measure ν on Ω satisfying

$$\nu(\{i_0\} \times \ldots \times \{i_{m-1}\} \times E \times \ldots) = \tau_{i_0} \pi_{i_0 i_1} \cdots \pi_{i_{m-2} i_{m-1}}$$

for all $i_0, \ldots, i_{m-1} \in E$ and $m \in \mathbb{N}$, which is S-invariant and ergodic.

Strict irreducibility

Consider the relation \sim on $E \times E$ arising between states $i, j \in E$ if either i = j or $\pi_{ki} > 0$ and $\pi_{kj} > 0$ for third state $k \in E$.

In the present setting the following conditions are equivalent:

The graph (E, \sim) is connected.

- \Leftrightarrow The matrix $\Pi^T \Pi$ is irreducible.
- $\Leftrightarrow \quad \text{The matrix } \Pi \Pi^T \text{ is irreducible.}$

The matrix Π is called *strictly irreducible* if it satisfies one (and thus all) of the above conditions.

Strict irreducibility

Consider the relation \sim on $E \times E$ arising between states $i, j \in E$ if either i = j or $\pi_{ki} > 0$ and $\pi_{kj} > 0$ for third state $k \in E$.

In the present setting the following conditions are equivalent:

The graph (E, \sim) is connected.

 \Leftrightarrow The matrix $\Pi^T \Pi$ is irreducible.

 \Leftrightarrow The matrix $\Pi \Pi^T$ is irreducible.

The matrix Π is called *strictly irreducible* if it satisfies one (and thus all) of the above conditions.

Theorem (Bufetov '00)

Let Π be strictly irreducible. Then the skew product T is ergodic if and only if the family $\{T_1, ..., T_k\}$ is ergodic.

Question: Is this condition optimal? Can it be extended to general Markov chains?

General Markov chains

Let (E, \mathscr{E}) be a measurable space. A map $\pi: E \times \mathscr{E} \to [0, 1]$ is called a *Markov kernel* if

- ▶ the component map $\pi(\cdot, B)$ is measurable for any $B \in \mathscr{E}$
- the component map $\pi(y, \cdot)$ is a probability measure for any $y \in E$ (which we denote by π_y in the following).

The product $\pi \kappa$ of two Markov kernels π and κ is given by

$$\pi\kappa(y,B) := \int_E \kappa(z,B) \ d\pi_y(z)$$

for $y \in E$ and $B \in \mathscr{E}$ and defines again a Markov kernel.

A probability measure τ on \mathscr{E} is called π -invariant if for all $B \in \mathscr{E}$ we have

$$\tau(B) = \int_E \pi(y, B) \ d\tau(y).$$

General Markov chains

We call a Markov kernel π *irreducible* wrt a π -invariant measure τ if for all $B \in \mathscr{E}$ with $\tau(B) > 0$ there is for τ -almost every $y \in E$ some $n \in \mathbb{N}$ (which may depend on y) such that $\pi^n(y, B) > 0$.

A general Markov chain consists of

- measurable space (E, \mathscr{E})
- a probability measure τ on (E, \mathscr{E})
- ▶ a Markov kernel $\pi \colon E \times \mathscr{E} \to [0, 1]$

By Kolmogorov's extension theorem there exists a unique probability measure ν on Ω satisfying

$$\nu(B_0 \times \ldots \times B_{m-1} \times E \times \ldots) = \int_{B_0} \int_{B_1} \ldots \int_{B_{m-1}} d\pi_{y_{m-2}}(y_{m-1}) \ldots d\pi_{y_0}(y_1) d\tau(y_0)$$

for all $B_0, \ldots, B_{m-1} \in \mathscr{E}$ and $m \in \mathbb{N}$.

Strict irreducibility of Markov kernels

We assume that τ is π -invariant and π is irreducible wrt τ . \rightsquigarrow The measure ν is S-invariant and ergodic.

We call a set $B \in \mathscr{E}$ deterministic if for τ -almost all $y \in E$ we have $\pi(y, B) \in \{0, 1\}$.

We shall say that the Markov kernel π is *strictly irreducible* wrt τ if every deterministic set $B \in \mathscr{E}$ has measure $\tau(B) \in \{0, 1\}$.

Remarks

- ▶ Generalization of the concept for finite state spaces. In this setting the minimal deterministic sets are given by the connected components of the graph (E, ~).
- Strict irreducibility implies irreducibility.

Excursion: Markov operators

A bounded linear operator $M\colon L^2(E,\tau)\to L^2(E,\tau)$ is called a $Markov\ operator$ if

- $f \ge 0$ implies $Mf \ge 0$
- $\bullet M1 = 1$
- $\int Mf \ d\tau = \int f \ d\tau$ for all $f \in L^2(E, \tau)$.

A Markov operator M is called *irreducible* if for any $D \in \mathscr{E}$ with $M \mathbb{1}_D = \mathbb{1}_D$ we have $\tau(D) \in \{0, 1\}$.

Remarks

- The class of Markov operators is closed under composition and taking adjoints.
- The Koopman operator associated to an MDS is always a Markov operator. It is irreducible if and only if the MDS is ergodic.

Markov kernels as Markov operators

A Markov kernel π with invariant probability measure τ gives rise to a Markov operator P defined by

$$Pf(y) := \int_E f \ d\pi_y$$

for $f \in L^2(E, \tau)$.

In the present setting we obtain the following equivalences:

• The irreducibility of π with respect to τ is equivalent to the irreducibility of P.

うして ふゆ く は く は く む く し く

• PP^* is irreducible if and only if P^*P is irreducible and both is equivalent to the strict irreducibility of π with respect to τ .

Ergodicity of step skew products

Theorem (Lummerzheim-Pogorzelski-Z. '23) The following assertions are equivalent:

- i) The Markov kernel π is strictly irreducible wrt τ .
- ii) Any step skew product T over S arising from a family (T_y)_{y∈E} of mp transformations on some probability space is ergodic if and only if the family (T_y)_{y∈E} is ergodic.

Remarks

- generalizes Bufetov's criterion from finite state spaces to arbitrary state space and shows that it is in fact a characterization.
- generalizes Kakutani's theorem from Bernoulli processes to Markov chains.

Proof: Kowalski's theorem

Consider the Koopman operator \hat{T} on $L^2(\nu \otimes \mu)$ given by

$$\hat{T}\varphi:=\varphi\circ T.$$

The adjoint \mathcal{L}_T of \hat{T} is called Perron-Frobenius operator.

Theorem (Kowalski '15): If $\varphi \in L^2(\nu \otimes \mu)$ is an eigenfunction of \mathcal{L}_T , then we have

$$\varphi(\omega, x) = \widehat{\varphi}(\omega_0, x) \quad \nu \otimes \mu$$
-almost surely

for some $\hat{\varphi} \in L^2(\tau \otimes \mu)$.

Observation: Every T-invariant function (i.e. any fixed function of \hat{T}) is an eigenfunction of \mathcal{L}_T .

Corollary: Every T-invariant function $\varphi \in L^2(\nu \otimes \mu)$ satisfies

$$\varphi(\omega, x) := \widehat{\varphi}(\omega_0, x) \quad \nu \otimes \mu$$
-almost surely

for some $\hat{\varphi} \in L^2(\tau \otimes \mu)$.

Proof: $(i) \Rightarrow (ii)$

Let $D \subseteq \Omega \times X$ be a *T*-invariant set. We want to show that $D = \Omega \times A$ for some set $A \subseteq X$ invariant under $(T_y)_{y \in E}$.

Corollary \rightsquigarrow There is a msb set $B \subseteq E \times X$ such that

$$\mathbb{1}_D(\omega, x) := \mathbb{1}_B(\omega_0, x) \quad \nu \otimes \mu\text{-a. s.}$$

For $x \in X$ set $B^x := \{y \in E : (y, x) \in B\}$, $g_x := \mathbb{1}_{B^x}$ and $h_x := \mathbb{1}_{E \setminus B^x}$. Lemma: Let M be an irreducible Markov operator. Let $g, h \ge 0$ with $g + h = \mathbb{1}$ such that $\langle Mg, h \rangle = 0$. Then either g = 0 or h = 0. Observation: The functions $\{g_x\}$ and $\{h_x\}$ satisfy

$$g_x(y) = P\Big\{g_{T_yx}\Big\}(y), \ h_x(y) = P\Big\{h_{T_yx}\Big\}(y)$$

for $\tau \otimes \mu$ -almost all $(y, x) \in E \times X$.

$$0 = \int_{E \times X} g_x(y)h_x(y) \ d\tau \otimes \mu(y, x) = \int_E \int_X P\Big\{g_{T_yx}\Big\}(y)P\Big\{h_{T_yx}\Big\}(y) \ d\mu(x)d\tau(y)$$
$$= \int_E \int_X Pg_x(y)Ph_x(y) \ d\mu(x)d\tau(y)$$
$$= \int_X \int_E Pg_x(y)Ph_x(y) \ d\tau(y)d\mu(x) = \int_X \langle Pg_x, Ph_x \rangle \ d\mu(x)$$

This implies that for μ -almost all $x \in X$ we have

$$\langle P^*Pg_x, h_x \rangle = \langle Pg_x, Ph_x \rangle = 0$$

and thus, by the Lemma above, either

$$1\!\!1_{B^x} = g_x = 0 \Rightarrow B_x = \emptyset$$

or

$$\mathbbm{1}_{B^x} = \mathbbm{1} - h_x = \mathbbm{1} \Rightarrow B_x = E.$$

This gives $B = E \times A$ for some msb $A \subseteq X$.

Easy: T-invariance of D implies A is invariant under $(T_y)_{y \in E}$.

Proof: $(ii) \Rightarrow (i)$

Assume that π is not strictly irreducible wrt τ \rightsquigarrow deterministic set $B \subseteq E$ with $\tau(B) \in (0, 1)$.

Consider the partition of E given by the sets

$$E_{B,B} := \{ y \in B \colon \pi(y,B) = 1 \}, \ E_{B,B^c} := \{ y \in B \colon \pi(y,B) = 0 \}$$

$$E_{B^c,B^c} := \{ y \in B^c \colon \pi(y,B^c) = 1 \}, \ E_{B^c,B} := \{ y \in B^c \colon \pi(y,B^c) = 0 \}.$$

Let d be the dyadic odometer on $[0, 1) \rightsquigarrow$ mp and ergodic wrt Lebesgue measure λ .

Set
$$I_1 := [0, 1/2)$$
 and $I_2 := [1/2, 1) \rightsquigarrow d(I_1) = I_2$ and $d(I_2) = I_1$.

Define **ergodic** family $(T_y)_{y \in E}$ of λ -preserving transformations T_y on [0, 1) by

$$T_y := \begin{cases} d, \text{ if } y \in E_{B,B^c} \cup E_{B^c,B} \\ \text{Id, if } y \in E_{B,B} \cup E_{B^c,B^c} \end{cases}$$

Eisner/Farkas/Haase/Nagel: Operator theoretic aspects of ergodic theory, Springer 2015 Proof: $(ii) \Rightarrow (i)$

Claim: The corresponding skew product T is not ergodic. Consider the sets $D_1, \ldots, D_4 \subseteq \Omega \times [0, 1)$ given by

$$D_1 := [E_{B,B}] \times I_1, \ D_2 := [E_{B,B^c}] \times I_1$$
$$D_3 := [E_{B^c,B^c}] \times I_2, \ D_4 := [E_{B^c,B}] \times I_2,$$
where $[M] := M \times E^{\mathbb{N}}$ for $M \subseteq E$, and set $D := D_1 \dot{\cup} \cdots \dot{\cup} D_4$.

 $\rightsquigarrow D$ is a *T*-invariant set of measure 1/2.

 $[E_{B,B}] \cup [E_{B,B^c}] = [B]$

$$[E_{B^c,B^c}] \cup [E_{B^c,B}] = [B^c]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

P. Lummerzheim, F. Pogorzelski and E. Zimmermann: *Strict irreducibility of Markov chains and ergodicity of skew products*, preprint, arxiv:2205.09847

Thank you!

A D F A 目 F A E F A E F A Q Q